View Record

AuthorDithebe, Khumisho
SubjectMicrobial, Biochemical and Food Biotechnology
AbstractIt has previously been implicated in literature that intracellular gas bubbles cannot form in yeast cells even under high gas supersaturation conditions. Furthermore, not even protein-coated gas vesicles found in Cyanobacteria are expected in yeasts. The lack of intracellular gas bubbles has been attributed to the increased structuring of water and lack of water with nucleation properties. This, however, is considered a missing link since yeasts, the workhorses of the baking and brewing industry, are known to produce and vigorously release carbon dioxide (CO2) gas during fermentation. Here we resolve the missing link between CO2 production by glycolysis and the eventual release of CO2 from the cells, and show that yeasts are capable of producing intracellular gas bubbles which were found to occupy a significant part of the cell. These gas bubbles do not contain a membrane that surrounds them. Furthermore, addition of zinc to the growth medium resulted in the âgalvanizationâ of the bubbles suggesting that the gas bubbles may possibly contain CO2. These findings should pave way for future research on CO2 behaviour under pressurized conditions that may have an impact on fermentation biotechnology. Furthermore we show that these intracellular gas bubbles deform cell organelles such as the nucleus. The skin surrounding the gas bubbles is able to withstand tension as they do not disintegrate when they come in contact with organelle membranes. Further research should now be performed on the mechanical effects of the gas bubbles on metabolic and coding functions of yeasts as gas bubbles deform and contort cell organelles. From these findings careful consideration is required during optimization of fermentation parameters to prevent CO2 toxicity effects on fermentation performance and flavor formation in practical brewing.
PublisherUniversity of the Free State